
Quiz yourself: Service types and service
providers in Java modules
The ServiceLoader class is key to using the Java Platform Module System.

Which statements are correct about the Java Platform Module System
(JPMS)? Choose two.
A. The service type must be a Java interface.

B. The service provider type must be a concrete public Java class.

C. The programmer has an option to inspect the service provider type before obtaining an
instance.

D. The service provider type may be a Java interface.

Answer. Option A is incorrect. The service type is commonly an interface, but it may
also be a class (either abstract or concrete).
Option B is incorrect, because the service provider type may also be an interface or a
class, either abstract or concrete. The reason that abstract types can be used here is
that a public static provider() method can be provided to serve as a factory. If
this method is present, it will be used by the ServiceLoader.
There are two possibilities concerning the relationship between the service type and
the service provider type.

 If the service provider type has a public static provider() method, the
service provider type need not have any relationship to the service type, but
the return type of the provider() method (which will be the actual service
implementation, in this case) must be assignment-compatible to the service
type.

 If no provider() method exists, the service provider type must have a
public zero-argument constructor, and that service provider type itself must
be assignment-compatible to the service type.

Option C is correct. A stream drawn from the ServiceLoader provides a means to find
and inspect implementation classes without having instantiated those services. This
allows lazy loading such that there is no need to load service implementations that
do not appear to be appropriate.
For example, assume a project’s code
uses @com.lang.Online and @com.lang.Offline annotations to describe the
operating mode of a particular translator factory provider. Therefore, you might have
a translator factory class that looks like the following:

@Online

public class GoogleTranslatorFactory implements TranslatorFactory {

 ... // code here

}

The following code will instantiate only those translator factories that carry
the @Online annotation:

ServiceLoader<TranslatorFactory> loader = ServiceLoader.load(TranslatorFactory.class);

Set<TranslatorFactory> onlineTF = loader

 .stream()

 .filter(p -> p.type().isAnnotationPresent(Online.class))

 .map(Provider::get)

 .collect(Collectors.toSet());

Notice that the stream contains ServiceLoader.Provider objects; these are a kind of
wrapper around the actual service. The Provider has two methods: type(), which
gives access to the java.lang.Class object that describes the service provider,
and get(), which loads and instantiates that service provider and returns the object.
Option D is also correct. As mentioned above, the provider type can be an interface;
in that case, the public static provider() method must be present and must return
an object that’s assignable to the service type.
Conclusion. The correct answers are options C and D.

